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This study develops an indirect optimal control solver based on the Homotopy Analysis
Method. A finite interval boundary value problem is generated by using the necessary
conditions of optimality and applying the Pontryagin’s Minimum Principle. Validation of
the solver is performed using comparisons with a collocation-based boundary value problem
solver, MATLAB’s bvp4c. The results demonstrate how simple initial guess to the boundary
value problem can be used to produce high quality solutions. The accuracy of the solutions
can be increased by increasing the order of solution at the cost of computational resources.

Nomenclature

N Non-linear governing equation
B Linear boundary conditions
L Linear operator
Ha Auxiliary function
co Convergence control parameter
δ Homotopy-derivative operator
φ, ψ Homotopy-Maclaurin series
ei Basis functions
x, y State variables
u,w State variables
r Spatial variable
Emd Discrete squared residual
q Embedding parameter
λ Co-state variable
J Cost functional
R Horizontal range, km
h Altitude, km
Vx Horizontal velocity, km/s
Vy Vertical velocity, km/s
g Acceleration due to Earth’s gravity, m/s2

V Boat speed, m/s
θ, α Steering angle, deg

Subscript
m Order of HAM series solution
n Order of governing differential equation
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I. Introduction

Indirect methods for trajectory optimization are based on using Calculus of Variation to solve for the first-
order necessary conditions for optimality. The problem is then converted to a boundary value problem (BVP)
which is further solved to give optimal trajectories. Indirect methods produce highly accurate trajectories
which makes them very popular in the aerospace industry.1 However, these methods in general suffer from
a number of issues which can be summarized as:
A narrow region of convergence due to local convergence properties and numerical instabilities of the problem
resulting in the requirement of a very good initial guess. Sometimes the problem is hypersensitive and
achieving convergence becomes almost impossible.
Popular indirect methods include the single shooting,2 multiple-shooting3 and the collocation methods. For
the current study, trajectory optimization problems are solved using two solvers- the Homotopy Analysis
Method based solver and the collocation based MATLAB’s bvp4c4 function. bvp4c divides the time interval
into subintervals and discretizes the differential equations along the intervals. The non-linear system of
equations resulting from the boundary conditions and the differential equations is solved using the Newton
iteration method. However, a very good initial guess for the co-states is often required for convergence of
the solution.

Highly nonlinear initial value and boundary value problems can also be solved using analytical approxi-
mation methods. The Homotopy Analysis Method is an analytic approximation method, which has gained
popularity in solving initial value problems arising in science, finance, and engineering after it was proposed
by Dr. Shijun Liao in 1992.5 It provides us with the benefit of controlling the convergence region of the
problem. It is independent of any parameter and provides great flexibility in the choice of initial guess. Liao
demonstrated the validity of Homotopy Analysis Method by solving the differential equations resulting from
some highly non-linear problems. By solving the Blasius flow equation using Homotopy Analysis Method,
Liao showed an increase in the size of the convergence region as compared to that of the original Blasius
power series solution,8 which makes HAM interesting enough to be investigated for the use in trajectory
optimization problems.

HAM has been used to solve linear and non-linear optimal control problems (OCPs). Zahedi and Nik
applied the original HAM approach to solve linear OCPs with quadratic performance index.9 In another
study, HAM was applied to solve a non-linear OCP to find the optimal maneuvers of a rigid asymmetric
spacecraft and compared the results generated using the bvp4c function.10 However, most of the OCPs
solved in the past are based on linear equations of dynamics. The current study shows how HAM can be
applied to indirect trajectory optimization problems with non-linear dynamics in improving the convergence
properties by reducing the effort to provide the initial guess. A generalized approach to provide initial guess
for the HAM based indirect method makes it more reliable for trajectory optimization.

II. Homotopy Analysis Method Theory & Background

To understand the basic idea of HAM, as developed by Dr. Shijun Liao, we consider an Initial Value
Problem (IVP) and extend the discussion to a BVP. Let one of the governing equations be given by a nth

order non-linear ODE

N[u(r, t), t] = 0, t ∈ [0, T ] (1)

subject to n linear initial boundary conditions,

Bk[t, u] = γk, 1 ≤ k ≤ n (2)

where, N is a nth order differential operator, Bk is a linear operator, u(t) is a smooth function, t is a
temporal variable, r is a spatial variable, and T ≥ 0 . For each governing equation N, using an embedding
parameter q, Liao suggested to construct a zeroth-order homotopy deformation equation given by Eq. (3),
so that the Homotopy-Maclaurin series solution for N, given by φ(r, t; q) exists and is analytic at q=0. The
Homotopy-Maclaurin series solution is shown in Eq. (4).

(1− q)L[φ(r, t; q)− u0(r, t)] = coqHaN[t, φ(r, t; q)], co 6= 0 (3)
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φ(r, t; q) = u0(r, t) +

+∞∑
m=1

um(r, t)qm, q ∈ [0, 1] (4)

L and u0(r, t) are the linear operator and the initial guess respectively, both provided by the designer. m is
the order of Maclaurin series, co is an auxiliary convergence control parameter, Ha is a non-zero auxiliary
function provided by the designer, and um is given by Eq. (5).

um(r, t) =
1

m!

∂mφ(r, t; q)

∂qm

∣∣∣∣
q=0

(5)

From Eq. (3), it can be observed that, as q increases from 0 to 1, the Homotopy-Maclaurin series φ(r, t; q)
varies continuously from u0(r, t) to u(r, t). We assume that the linear operator, initial guess, auxiliary
function and co are chosen such that the Maclaurin series converges at q = 1. We differentiate the zeroth
order deformation equation, Eq. (3) m times with respect to q and divide it by m! to obtain the mth order
deformation equation given by Eq. (6). Integrating Eq. (6) with the linear boundary conditions, Eq. (7)
gives the HAM series solution, u(r, t) [Eq. (8)]. The value of χm is given by Eq. (9).

L[um(r, t)− χmum−1(r, t)] = Hacoδm−1(N[t, φ(r, t; q)]) (6)

um(r, 0) = 0 (7)

u(r, t) = u0(r, t) +

+∞∑
m=1

um(r, t) (8)

χm =

{
0,m ≤ 1,

1,m > 1

}
(9)

δk(φ) is called as the kth-order homotopy-derivative operator given in Eq. (10).

δk(φ) =

(
1

k!

∂kφ

∂qk

)∣∣∣∣
q=0

(10)

In practice, the series solution obtained by Eq. (8) is truncated to a finite number of terms, which gives us
the M th order approximation as

u(r, t) = u0(r, t) +

M∑
m=1

um(r, t) (11)

For each value of m=1,2,3..., Eq. (6) converts the non-linear ODE, N[u(r, t), t] = 0 to a linear ODE with
order equal to the order of the linear operator in use.

II.A. HAM Approach for a Boundary Value Problem

For solving a BVP using HAM, it is first formulated as an IVP. The known initial boundary conditions from
Eq. (2) are used in formulating the initial guess as explained below. For the state variables with unknown
initial boundary conditions, we assume their values to be finite parameters β1, β2,....βn. After obtaining
the series solutions for each state and co-state variable, we use the given terminal boundary conditions to
root-solve a non-linear system of n equations to obtain the values of the finite parameters β1, β2,....βn.

The approach is demonstrated with the help of a simple optimal control problem as follows. The objective
functional is defined as

Min J =

∫ 1

0

(x2 + u2)dt (12)

with the dynamics
ẋ = u, x(0) = 1, t ∈ [0, 1] (13)
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where u is the control variable. On applying the Euler-Lagrange theorem, we obtain the following BVP,

ẋ = −λ, λ̇ = −x, x(0) = 1, λ(1) = 0 (14)

where λ is a co-state. This problem has an analytical solution given by Eq. (15)

x(t) =
et + e2e−t

1 + e2

λ(t) = −e
t − e2e−t

1 + e2

(15)

Homotopy-Maclaurin series for the state and co-state are defined in the following Eq. (16).

φ(t; q) = x0(t) +

+∞∑
m=1

xm(t)qm, q ∈ [0, 1]

ψ(t; q) = λ0(t) +

+∞∑
m=1

λm(t)qm, q ∈ [0, 1]

(16)

where xm and λm can be obtained by integrating the respective mth order deformation equations given by
Eq. (17).

L[xm(t)− χmxm−1(t)] = Hacoδm−1(N1[t, φ(t; q)])

L[λm(t)− χmλm−1(t)] = Hacoδm−1(N2[t, ψ(t; q)])
(17)

subject to the boundary conditions

xm(0) = 0

λm(0) = 0
(18)

where

N1 : φ̇+ ψ = 0

N2 : ψ̇ + φ = 0
(19)

M th order HAM solution for the state and co-state variables is represented as

x(t) = x0(t) +

M∑
m=1

xm(t)

λ(t) = λ0(t) +

M∑
m=1

λm(t)

(20)

II.B. Selection of Initial Guess, Linear operator, & Auxiliary Function

Although, there are no conclusive proofs and rigorous theories to select the initial guess, linear operator, and
the auxiliary function, HAM theory provides suggestions for their selection to solve practical problems.12

Liao suggested to define a set of basis functions to correctly represent the series solution of the Eq. (1). A
typical HAM series solution can be represented as a power series given by

u(t) =

+∞∑
m=1

amem(t) (21)

where am are the coefficients obtained by the HAM series solution, and em(t) are the basis functions, chosen
by the designer to represent the series solution. Eq. (21) is called as the rule of solution expression. The
initial guess, linear operator, and the auxiliary function has to be chosen in such a way so that they satisfy
the rule of solution expression as explained below.
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II.B.1. Initial Guess

The initial guess must be chosen such that it can be expressed by the sum of the basis functions defined
above. Also, the initial guess for a state must satisfy the maximum possible number of boundary conditions
for that state. Eq. (22) shows a typical representation of the initial guess for a state

x0(t) =

n∑
m=1

bmem(t) (22)

where n is the number of boundary conditions on the state, bm are the finite coefficients chosen by the
designer to satisfy the boundary conditions, and em(t) are the basis functions chosen to represent the series
solution.

II.B.2. Linear Operator

The linear operator must be chosen such that the solution of Eq. (23) is expressed as the sum of the basis
functions chosen earlier and is given by Eq. (24)

L[w(t)] = 0 (23)

w(t) =

K1∑
m=1

dmem(t) (24)

where, dm are a set of finite coefficients chosen by the designer and K1 is a positive integer. There is no
strict rule to select the value of K1, but it is suggested that in most of the problems, it should be chosen as
the highest order of derivative of the original Eq. (1). For finite time interval BVPs, where t ∈ [0, T ], Ha is
simply used as 1.
For the current problem we use the simplest rule of solution expression, a polynomial power series given by
Eq. (26) for which the set of basis functions is the following set em

em(t) = [1, t, t2, t3....] (25)

x(t) = a1 + a2t+ a3t
2 + ... (26)

where a1, a2, and a3 are the coefficients which are obtained by the HAM series solution. In general, we
have the freedom to choose the basis functions as polynomials, trigonometric functions, Fourier series or a
combination of them.

The approach mentioned in Section II.B.1 is used to select the initial guesses for the state and co-state.
For convenience, we decide to select the initial guesses which satisfy only the initial boundary conditions for
both the state and the co-state. This assumption results in n = 1 for the initial guess. Hence,

x0(t) =

1∑
m=1

b1mem(t) = b11e1

λ0(t) =

1∑
m=1

b2mem(t) = b21e1

(27)

To satisfy the initial boundary condition on the state, we select b11 = 1. Since the initial boundary condition
for the co-state is unknown, we assume it to be some finite value β1 as explained in Section II.A. We select
b21 = β1 to satisfy the initial boundary condition on the co-state. The initial guesses for the state and
co-state are now calculated to be:

x0(t) = 1

λ0(t) = β1
(28)

For the linear operator, we use the approach described in Section II.B.2 to define w(t) as shown in Eq. (29).
Since the highest order derivative for both the original governing equations is 1, the value for K1 is chosen
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to be 1. We can now define w(t) as

w(t) =

1∑
m=1

dmem = d1e1 = d1 (29)

where, d1 is a constant. The linear operator is chosen to be a first order derivative, such that it satisfies
Eq. (23) as follows:

L(w(t)) =
d

dt
(d1) = 0 (30)

Using Eq. (17) and Eq. (19), the mth order deformation equations can now be written for the state and
costate as

xm(t; co) = χmxm−1(t) + co

∫ t

0

Haδm−1(ẋ+ λ)dt+ C1

λm(t, co) = χmλm−1(t) + co

∫ t

0

Haδm−1(λ̇+ x)dt+ C2

m=1,2,3,... (31)

C1 and C2 are constants of integration determined by the initial conditions given by Eq. (18). As mentioned
previously, we assume Ha = 1.

II.C. Auxiliary Convergence Control Parameter (co)

HAM guarantees the convergence of the series solution,12 which counts as one of the major advantages to
solve BVPs. MATLAB’s symbolic toolbox is used to solve Eq. (31). We obtain terms for xm and λm and
substitute them into Eq. (20), to obtain a family of series solutions in co. The solutions for state and co-state
are functions of the independent variable t and co. The Homotopy Analysis Method provides us the freedom
to choose the value of the co to adjust the region and the rate of convergence. Liao suggested to plot the
curves of physical quantities like ẋ|t=t′ , ẍ|t=t′ with co to study their dependency on co, where t′ can be any
instant of time in the domain of the problem. These curves are termed as co ∼ curves and are denoted as
ẋ ∼ co and ẍ ∼ co for any state or physical quantity. According to the HAM convergence theorem,12 all
convergent series of ẋ and ẍ converge to constant values for a specific range (Rco) of co values, resulting in
a horizontal line in the co ∼ curves. Regardless of the initial guess, and for any value of co in Rco , the same
value of the physical quantity is obtained, and the series solution is said to converge.

II.D. Discrete Squared Residual (Emd)

Squared residual is defined as a measure of how well the power series satisfies the governing equations
integrated over the whole domain. The squared residual for any governing equation is calculated as

Em(co) =

∫ T

0

{
N[
∑m

n=1 um(t, co)]
}2

dt (32)

where T is the final value of time interval used in Eq. (1), Em is the squared residual for the governing
equation, obtained at mth order series solution. co plays an important role in determining the residual for
any series solution. As proposed by Liao,11 once Rco is determined, the optimal value of co can be calculated
by minimizing the squared residual within Rco .
Due to the high computational requirements for Em, a discrete squared residual Emd, is also defined for the
mth order series solution as

Emd =
1

Nstep + 1

Nstep∑
j=0

{
∆m(τj ; co)

}2

, τj =
tf j

Nstep
(33)

where
∆m(τ ; co) = N(um(τ ; co)) (34)

Nstep is the number of time steps used, and tf is the final time of the OCP. For the current study, Nstep

is assumed to be 40. An overall discrete squared residual Emd,total can be defined by adding the discrete
squared residuals for each governing equation as follows

Emd,Total = Emd,N1
+ Emd,N2

+ Emd,N3
+ ... (35)
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where Emd,N1 is the discrete squared residual for the governing equation N1.
The mth order deformation Eq. (31) is solved to obtain the analytical terms for xm and λm terms in co

and β1. First, the value of co is assumed to be -1. Then, the final boundary condition on the co-state is
used to obtain a non-linear equation which is root solved for β1. Using β1, the M th order series solutions
for both the state and co-state are evaluated.

Further, the co ∼ curves are plotted to understand the convergence properties of the state and co-state
series solutions. For this problem, the quantities x ∼ co, ẋ ∼ co, ẍ ∼ co for the state and λ ∼ co, λ̇ ∼ co,
λ̈ ∼ co for the co-state are used. Theoretically, since the curves converge at each instant of time, the final
time of 1 s is chosen arbitrarily. Figs. 1(a) and 1(b) show the co ∼ curves for the 3rd order and 5th order series
solutions respectively. The two plots can be compared to conclude that the convergence region increases
with an increase in the order of solution, giving designers more freedom in choice of co. For the 5th order
solution, a common co range of [-1.2, 0] could be identified for both the state and the co-state in which the
curves converge to constant values for all the mentioned physical quantities.

co

-2 -1.5 -1 -0.5 0

x
(1
),
ẋ
(1
),
ẍ
(1
)

-10

-5

0

co ∼ curves for state

x(1)
ẋ(1)
ẍ(1)
co

co

-2 -1.5 -1 -0.5 0

λ
(1
),
λ̇
(1
),
λ̈
(1
)

-10

-5

0

co ∼ curves for co-state

λ(1)

λ̇(1)

λ̈(1)
co

(a) 3rd order co ∼ curve

co

-2 -1.5 -1 -0.5 0

x
(1
),
ẋ
(1
),
ẍ
(1
)

-40

-30

-20

-10

0

co ∼ curves for state

x(1)
ẋ(1)
ẍ(1)
co

co

-2 -1.5 -1 -0.5 0

λ
(1
),
λ̇
(1
),
λ̈
(1
)

-40

-30

-20

-10

0

co ∼ curves for co-state

λ(1)

λ̇(1)

λ̈(1)
co

(b) 5th order co ∼ curve

Figure 1: co ∼ Curves for Simple Optimal Control Problem

Emd,Total given by Eq. (35), is minimized to obtain the optimal co for the 5th order solution. MATLAB’s
fminbnd function based on the Golden Section Search Algorithm with parabolic interpolation is used to
minimize Emd,total for the range [-1.2, 0]. The optimal value of co for the 5th order solution is found to be
-0.9567. The optimal co is then used to obtain the updated series solutions for the state and co-state. β1
is root solved again by using the terminal boundary condition on the co-state. This method of using an
updated value of co to obtain the series solutions is known as “convergence control”.
Table 1 shows a reduction in the total discrete squared residual obtained by using an optimal value of co,
as compared to co of -1. The computations were performed on an Intel(R) Xeon(R) CPU-E3-1225 v3 3.20
Ghz (4 CPUs) processor. Fig. 2 shows the performance curve for the problem. Reduction in the discrete
squared residual is traded with increase in the computational cost. It is found that the residual decreases
with increase in the order of series solution.

Table 1: Effect of co on Emd,Total - Simple Optimal Control Problem

co Emd,Total

−1 3.17× 10−5

−0.9567 1.27× 10−6
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-2

  M=5

  M=4

  M=3

  M=2

Figure 2: Performance curve for Simple Optimal Control Problem

The series solutions for both the state and costate are compared with the analytical solution in the
Fig. 3. The series solutions without convergence control (co = −1) are also compared with the solutions
obtained using the optimal co. Although, both of the values of co lie in the convergence region [Rco ], a small
improvement is obtained by using the optimal value of co. The 5th order series solution is given by Eq. (36).

x(t) = 1− 0.76t+ 0.5t2 − 0.12t3 + 0.04t4 − 0.01t5

λ(t) = 0.76− t+ 0.38t2 − 0.16t3 + 0.03t4 − 0.01t5
(36)

Time [s]

0 0.2 0.4 0.6 0.8 1
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HAM solution (optimal co)
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Analytical solution
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C
o
s
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te
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λ
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0.6

0.7

0.8

HAM solution (co = −1)
Initial guess (co = −1)
HAM solution (optimal co)
Initial guess (optimal co)
Analytical solution

Figure 3: State and Co-state 5th order HAM solution for the Simple Optimal Control Problem.

Different initial guesses were used to compute the HAM series solution. Table 2 shows the Emd,Total values
obtained at 5th order HAM solution for the initial guesses used. The initial guess given in the last row is based
on an exponential rule of solution expression. Since the analytical solution of the problem (Eq. (15)) contains
exponential terms, the exponential series rule of solution expression is an apt choice for this particular
problem. This fact is also confirmed by the least value of Emd,Total obtained by using the exponential initial
guess as compared to other expressions.
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Table 2: Effect of Initial Guess on Emd,Total

Initial Guess [x0, λ0] Emd,Total

[1, β1] 1.27× 10−6

[1, β1(1− t)] 1.90× 10−6

[1, β1e
t] 1.37× 10−5

[et, β1e
t] 1.41× 10−8

III. Zermelo’s Problem

Zermelo’s problem13 consists of minimizing the time required by a boat to cross a river. Fig. 4 shows a
schematic of the optimal control problem. θ is the boat steering angle from the horizontal direction which
is varied continuously to reach the terminal point across the river in the minimum possible time. The boat
is assumed to move with a constant velocity, V of 1 m/s.

Figure 4: Schematic for Zermelo’s problem. Figure in citation.13

The objective function, J, is defined as
Min J = tf (37)

with the dynamics
ẋ = V cos θ

ẏ = V sin θ
(38)

where, the states x and y are the horizontal and vertical coordinates respectively. We use the Euler-Lagrange
theorem to obtain the dynamics for the co-states given in Eq. (39). The control law is evaluated and is given
by Eq. (40).

λ̇x = 0

λ̇y = 0
(39)

tan θ =
λy
λx

(40)

The boat starts from (0,0) and crosses the river to reach (1,1). The set of boundary conditions along with
the transversality condition obtained for the final time are given in Eq. (41).

x(0) = 0, y(0) = 0

x(tf ) = 1, y(tf ) = 1

Htf = −1

(41)

where Htf is the value of the hamiltonian calculated at the final time tf . This problem has an analytical
solution given by Eq. (42).
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x(t) =
1√
2
t

y(t) =
1√
2
t

tf =
1√
2
s

θ(t) = 45o

λx(t) = λy(t)

(42)

III.A. HAM Problem Formulation

The Homotopy-Maclaurin series and the mth order deformation equations for the states and co-states are
formulated. A set of polynomial functions as the basis functions and a rule of solution expression similar
to the one used in the previous problem given by Eq. (26) is chosen for Zermelo’s problem. Similar to the
process before, for convenience, we select the initial guesses which satisfy only the initial boundary conditions
on the states and co-states. The initial guess constructed is given in the Table 3.

Table 3: Initial Guess for Zermelo’s Problem

State/Co-state Initial Guess

x 0

y 0

λx β1

λy β2

Since the highest order of derivative for all the governing equations is 1, we select the value of K1 defined in
Eq. (24) to be 1. Similar to the previous problem, the linear operator is calculated to be d

dt . The auxiliary
function is chosen to be 1. Since we are also required to calculate the optimal final time for the problem,
another unknown parameter, tf , is used. We start by selecting the value of co to be -1. The terminal
boundary conditions on the states and the transversality condition on the final time parameter, tf , are
applied to formulate a non-linear system of equations in the parameters β1, β2, and tf . MATLAB’s Fsolve
function is used to numerically solve the non-linear system of equations.

III.B. Results for Zermelo’s Problem

Fig. 5 shows the co ∼ curves for both the state variables at the 5th order solution for co ∈ [−2, 0]. Since the
co-state values are constant, they are not dependent on co. For the states, co = −1 lies in the horizontal
convergence region, and can be used to evaluate the series solutions. Hence,“convergence control” is not
required for this problem.

co

-2 -1 0

x
(t

f
)

0.2

0.6

1

x(tf )
ẋ(tf )

co

-2 -1 0

y
(t

f
)

0.2

0.6

1

y(tf )
ẏ(tf )

Figure 5: co ∼ curves for Zermelo’s problem: co ∈ [−2, 0]
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The series solutions for the states and co-states are compared with the analytical results in Fig. 6. State
variable trajectories and tf calculated from the HAM approach agree with the analytical solution. Co-state
variables are constant and can take any non-zero real value. Fig. 7(a) compares the control history obtained
using the two methods. A constant steering angle of 45 deg is needed to be maintained for the boat to reach
the terminal point. Fig. 7(b) shows that a first order HAM solution results in a Emd,Total of the order of
10−26.

0 0.5 1 1.5

Time [s]

0

0.5

1
x

HAM Initial Guess

HAM Solution

Analytical Solution

0 0.5 1 1.5

Time [s]

0
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1

y

0 0.5 1 1.5

Time [s]

-0.8

-0.7

-0.6
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λ
x
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Time [s]
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Figure 6: State and Co-state - 5th order HAM solution for Zermelo’s Problem
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(b) Performance Curve - Zermelo’s Problem

Figure 7: Results - Zermelo’s Problem

IV. 2D Ascent Problem

A finite time 2D ascent problem is solved to demonstrate the applicability of the HAM based indirect
method on a non-linear aerospace trajectory optimization problem. The 2D ascent problem is a popular
optimal control problem emulating the satellite launch from the surface of the Earth to an orbit of fixed
altitude in the minimum possible time.

IV.A. Problem Formulation

A modified 2D ascent problem has been constructed to test the HAM approach on the optimal control
problem. A flat Earth model is assumed as shown in Fig. 8. The objective of this optimal control problem is
to maximize the final horizontal velocity of the vehicle in orbit in a given fixed time. The original 2D ascent
problem13 has been simplified to a fixed final time problem by using the following assumptions:

1. A vehicle launched from the surface of the Earth must reach an orbit of 185.2 km in 485 seconds to
achieve a maximum terminal horizontal component of velocity.

2. An instantaneous steering angle α is the only control variable.
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Figure 8: Flat Earth model for 2D ascent problem.13 Figure in citation

3. The acceleration due to gravity from the Earth is assumed to be 9.8 m/s
2
.

4. Thrust to weight ratio for the vehicle is 3.

5. A constant mass and a constant thrust force F is assumed.

6. Final altitude to be achieved is 185.2 km.

7. There is no atmosphere and no aerodynamic forces on the vehicle.

The objective function for this case is defined by Eq. (43)

Min J = −vxf
(43)

with the dynamics given by Eq. (44). The thrust acceleration for the vehicle is calculated using Eq. (45)

Ṙ = vx

ḣ = vy

v̇x =
F

mo
cosα

v̇y =
F

mo
sinα− g

(44)

F

mo
= (Thrust to weight)(g) = 29.4 m/s

2
(45)

The boundary conditions on the states and co-states for the boundary value problem formulated are given
in Table. 4.

Table 4: Boundary Conditions - 2D ascent problem.

State/Co-state Initial Condition Terminal Condition

R 0 km free

h 0 km 185.2 km

vx 0 km/s free

vy 0 km/s 0 km/s

λR free 0

λh free free

λvx free -1

λvy free free
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IV.B. HAM Formulation

Following the similar approach as described in the Section II.A, we formulate the HAM problem by defining
the Homotopy-Maclaurin series and the mth order deformation equations for each state and co-state variable.

The choice of the basis functions and the rule of solution expression is the same as used for the simple
control problem given by Eq. (25). Same approach is used for the selection of initial guess as used for the
previous problems. Only the initial boundary conditions are considered to build the initial guess, as shown
in the Table 5. From Table 4, it can be seen that the initial conditions for the co-states are unknown. Hence,
we select parameters for those values.

Table 5: Initial Guess - 2D Ascent Problem

State and Co-state Initial Guess

R 0

h 0

vx 0

vy 0

λR β1

λh β2

λvx β3

λvy β4

Same approach for the selection of linear operator and auxiliary function are used as described in the
Section II.B. The value of K1 is chosen to be 1, since the highest order of derivative for all the governing
equations is 1. Using Eq. (23), we obtain the linear operator as d

dt . The auxiliary function is selected to be
1. The 4 terminal boundary conditions given in Table 4 are used to build a nonlinear system of equations
in β1, β2, β3 and β4. Table 6 lists the values of parameters obtained at each order of solution.

Table 6: Parameter Values - 2D Ascent Problem

Order of solution β1 β2 β3 β4

2 0 -2.3230×10−4 -1 -0.4144

3 0.0008 -2.3230×10−4 -1 -0.5975

4 3.7368×10−30 -6.2122×10−4 -1 -0.5133

5 1.1183×10−4 -0.0011 -1 -0.6333

6 4.8850×10−31 -7.4772×10−4 -1 -0.5423

7 -7.0779×10−29 -8.3634×10−4 -1 -0.5611

8 -5.7842×10−31 -7.8445×10−4 -1 -0.5501

9 -4.4299×10−30 -8.0683×10−4 -1 -0.5548

10 -7.9876×10−16 -7.9460×10−4 -1 -0.5522

10th order for optimal co 6.9437×10−29 -0.0007 -1 -0.5522

IV.C. Results for 2D Ascent Problem

Fig. 9 shows the co curves for the 10th order series solutions. No common horizontal region can be found out
for which all the physical quantity converge. In this case, optimal co is calculated to be -0.9996 by simply
minimizing Emd,Total as a function of co for real values. Figs. 10 and 11 compare the state and co-state series
solution with the bvp4c solution. It can be seen from Fig. (10) that an initial guess of 0 is deformed into a
highly non-linear solution using this approach. Fig. 12 compares the the control history obtained from the
two methods. Performance curve for the ascent problem is shown by Fig. 13. An irregular peak for 5th order
solution is due to inability of the MATLAB’s numerical solver to obtain the solution in 2,000,000 function
evaluations. Since the number of analytical terms in the deformation equations increase with the order, the
CPU time for the 10th order solution almost triples to that of the 9th order solution.
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10 ḧ(tf )

co

-2 -1 0

v̈
x
(t

f
)

-0.3

-0.2

-0.1

0

v̈x(tf )

co

-2 -1 0

v̈
y
(t

f
)

-0.2

-0.1

0

v̈y(tf )

Figure 9: co ∼ curves for co ∈ [−2, 0] - 2D Ascent Problem
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Figure 13: Performance Curve - 2D Ascent Problem

V. Conclusion and Future Work

HAM based indirect method for trajectory optimization is demonstrated on linear and non-linear optimal
control problems. The HAM based solver exploits the flexibility and ease available for the initial guess
as compared to the collocation solver. Use of convergence control in a region is also demonstrated in the
approach. The HAM solver currently suffers from high computational times which can be further worked
upon. This study concludes by showing an immense potential in the development of HAM based indirect
solvers for trajectory optimization. Further work in this area is mentioned as follows

1. Process of integrating the symbolic deformation equations can be parallelized to reduce computational
time.

2. Quantifying the rate of convergence can be done to observe the process of convergence control. This
will further help in classifying optimal control problems based on their convergence properties.

3. As suggested in the theory, multiple convergence control parameters can be used further to control the
rate of convergence.

4. For higher fidelity solutions, the approach can be used to build hybrid solvers with faster solvers like
collocation and pseudospectral methods.
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