
ar
X

iv
:2

20
3.

01
49

7v
2

 [
cs

.R
O

]
 1

4
A

ug
 2

02
2

2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022). Preprint. Accepted June 2022.
2022 ©IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Analytical Second-Order Partial Derivatives of Rigid-Body Inverse Dynamics

Shubham Singh1, Ryan P. Russell1 and Patrick M. Wensing2

Abstract— Optimization-based robot control strategies often
rely on first-order dynamics approximation methods, as in iLQR.
Using second-order approximations of the dynamics is expensive
due to the costly second-order partial derivatives of the dynamics
with respect to the state and control. Current approaches for
calculating these derivatives typically use automatic differentia-
tion (AD) and chain-rule accumulation or finite-difference. In
this paper, for the first time, we present analytical expressions
for the second-order partial derivatives of inverse dynamics for
open-chain rigid-body systems with floating base and multi-DoF
joints. A new extension of spatial vector algebra is proposed that
enables the analysis. A recursive algorithm with complexity of
O(Nd2) is also provided where N is the number of bodies and
d is the depth of the kinematic tree. A comparison with AD in
CasADi shows speedups of 1.5-3× for serial kinematic trees with
N > 5, and a C++ implementation shows runtimes of ≈51µs for
a quadruped.

I. INTRODUCTION

In recent years, optimization-based methods have become

popular for robot motion generation and control. Although full

second-order (SO) optimization methods offer superior conver-

gence properties, most work has focused on using only the

first-order (FO) dynamics approximation, such as in iLQR [1],

[2]. Differential Dynamic Programming (DDP) [3] is a use-

case for full SO optimization that has gained wide interest for

robotics applications [4]–[7]. Variants of DDP using multiple

shooting [8] and parallelization [9] have been developed for

computational and numerical improvements.

The state-of-the-art for including SO dynamics derivatives

in trajectory optimization is the work by Lee et al. [10],

where they use forward chain-rule expressions (i.e., recursive

derivative expressions) to calculate the SO partial derivatives

of joint torques with respect to joint configuration and joint

rates for revolute and prismatic joint models. Nganga and

Wensing [11] presented a method for getting the SO directional

derivatives of inverse dynamics as needed in the backward pass

of DDP by employing reverse mode Automatic Differentiation

(AD) and a modified version of the Recursive Newton Euler

Algorithm (RNEA) [12]. Although this strategy avoids the

need for the full SO partial derivatives of RNEA, it lacks the

opportunity for parallel computation across the trajectory. Full

SO partial derivatives calculation, on the other hand, can be

easily parallelized to accelerate the backward pass of DDP.

Other trajectory optimization schemes aside from DDP may

also benefit from the full SO partials.

AD tools depend on forward or reverse chain-rule accumula-

tion and can suffer from high memory requirements [13]. Finite-

1 Aerospace Engineering, The University of Texas at Austin, TX-78751,
USA. singh281@utexas.edu, ryan.russell@utexas.edu

2 Aerospace & Mechanical Engineering, University of Notre Dame, IN-
46556, USA. pwensing@nd.edu

This work was supported in part by the National Science Foundation grants
CMMI-1835013 and CMMI-1835186.

difference methods, on the other hand, can be parallelized,

but suffer from low accuracy. Such inaccurate Jacobian and

Hessian approximations during optimization often lead to ill-

conditioning, and poor convergence [10].

Although significant work has been done for computing FO

partial derivatives of inverse/forward dynamics [14]–[17], the

literature still lacks analytical SO partial derivatives of rigid-

body dynamics. This is mainly due to the tensor nature of SO

derivatives, and the lack of established tools for working with

dynamics tensors. The main contribution of this paper is to

extend the FO derivatives of inverse dynamics (ID) presented

in Ref. [14] to SO derivatives w.r.t the joint configuration (q),

velocity vector (q̇), and joint acceleration (q̈) for multi-Degree-

of-Freedom (DoF) joints modeled with Lie groups. Our method

departs from the chain-rule approach used in [10], and thus

gains additional efficiency in the associated algorithm. For this

purpose, we contribute an extension of Featherstone’s spatial

vector algebra tools [12] for tensor use. The SO derivatives

algorithm herein could also be parallelized (e.g., for use with

GPUs), building on the FO case in Ref. [18].

In the following sections, Spatial Vector Algebra (SVA) is

reviewed for dynamics analysis, followed by an extension of

SVA for use with second-order derivative tensors. Then, the

algorithm is developed for the SO partial derivatives of ID.

The resulting expressions and algorithm are very complicated,

but are provided in the form of open-source algorithm, with

full derivation in Ref. [19] while keeping the current paper

self-contained. The performance of this new SO algorithm is

compared to AD using CasADi [20] in MATLAB.

II. RIGID-BODY DYNAMICS BACKGROUND

Rigid-Body Dynamics: For a rigid-body system with n-

dimensional configuration manifold Q, the state variables are

the configuration q ∈ Q and the generalized velocity vec-

tor q̇ ∈ R
n, while the control variable is the generalized

force/torque vector τ ∈ R
n. With this convention, q̇ uniquely

specifies the time rate of change for q without strictly being

its time derivative. The Inverse Dynamics (ID), is given by

τ =M(q)q̈ +C(q, q̇)q̇ + g(q) (1)

= ID(model, q, q̇, q̈) (2)

where M ∈ R
n×n is the mass matrix, C ∈ R

n×n is the

Coriolis matrix, and g ∈ R
n is the vector of generalized

gravitational forces. An efficient O(N) algorithm for ID is the

RNEA [12], [21].

Notation: Spatial vectors are 6D vectors that combine the

linear and angular aspects of a rigid-body motion or net

force [12]. Cartesian vectors are denoted with lower-case letters

with a bar (v̄), spatial vectors with lower-case bold letters (e.g.,

a), matrices with capitalized bold letters (e.g., A), and tensors

with capitalized calligraphic letters (e.g., A). Motion vectors,

1

http://arxiv.org/abs/2203.01497v2
mailto:singh281@utexas.edu
mailto:ryan.russell@utexas.edu
mailto:pwensing@nd.edu

such as velocity and acceleration, belong to a 6D vector space

denoted M6. Force-like vectors, such as force and momentum,

belong to another 6D vector space F 6. Spatial vectors are

usually expressed in either the ground coordinate frame or a

body coordinate (local) frame. For example, the spatial velocity
kvk ∈ M6 of a body k expressed in the body frame is
kvk =

[

kω̄⊤
k

kv̄⊤k
]⊤

where kω̄k ∈ R
3 is the angular velocity

expressed in a coordinate frame fixed to the body, while kv̄k
∈ R

3 is the linear velocity of the origin of the body frame.

When the frame used to express a spatial vector is omitted, the

ground frame is assumed.

A spatial cross product between motion vectors (v,u), writ-

ten as (v×)u, is given by Eq. 3. This operation gives the time

rate of change of u, when u is moving with a spatial velocity

v. For a Cartesian vector ω̄, ω̄× is the 3D cross-product matrix.

A spatial cross product between a motion and a force vector is

written as (v×∗)f , as defined by Eq. 4.

v× =

[

ω̄× 0

v̄× ω̄×

]

(3) v×∗ =

[

ω̄× v̄×
0 ω̄×

]

(4)

An operator ×∗ is defined by swapping the order of the

cross product, such that (f×∗)v = (v×∗)f [22]. Further

introduction to SVA is provided in Ref. [12].

Connectivity: An open-chain kinematic tree (Fig. 1) is consid-

ered with N links connected by joints, each with up to 6 DoF.

Body i’s parent toward the root of the tree is denoted as λ(i),
and we define i � j if body i is in the path from body j to

the root. Joint i is defined as the connection between body i
and its predecessor.

We consider joints whose configurations form a sub-group

of the Lie group SE(3). For a prismatic joint, the configuration

and rate are represented by qi, q̇i ∈ R, while for a revolute

joint, qi ∈ SO(2), and q̇i ∈ R gives the rotational rate of the

joint. For a spherical joint, qi ∈ SO(3), and q̇i =
iω̄i/λ(i) ∈ R

3

gives relative angular velocity between neighboring bodies. For

a 6-DoF free motion joint, qi ∈ SE(3), and q̇i =
ivi/λ(i) ∈

R
6.

The spatial velocities of the neighbouring bodies in the tree

are then related by the recursive expression vi = vλ(i) +Siq̇i,

where Si ∈ R
6×ni is the joint motion subspace matrix for joint

i [12] with ni its number of DoFs. The velocity vi can also be

written in an analytical form as the sum of joint velocities over

predecessors as vi =
∑

l�i Slq̇l. The derivative of the joint

motion subspace matrix in local coordinates (often denoted

S̊i [12]) is assumed to be zero. The quantity Ṡi = vi × Si

signifies the rate of change of Si due to the local coordinate

system moving.

Dynamics: The spatial equation of motion [12] is given for

body k as fk = Ikak+vk×
∗Ikvk, where fk is the net spatial

force on body k, Ik is its spatial inertia [12], and ak is its

spatial acceleration. The development in Ref. [14] presents two

additional spatial motion quantities Ψ̇, Ψ̈ (Eq. 5) essential to

the derivation in this paper. The quantities Ψ̇j and Ψ̈j represent

the time-derivative of Sj , and Ψ̇j , respectively, due to joint j’s

1

2

35

6

9

0

8

Floating-
Base
Joint

(6-DoF)

7

4

λ(5) = 4

ν(4) = {4, 5, 6}

ν(4) = {5, 6}

1

2

3

0

4

5

6

Fig. 1: Convention examples with floating- and fixed-base systems.

predecessor λ(j) moving.

Ψ̇j =vλ(j) × Sj

Ψ̈j =aλ(j) × Sj + vλ(j) × Ψ̇j

(5)

The analytical expressions for the FO partial derivatives of

ID w.r.t q and q̇ [14] are given below, with other similar formu-

lations in [15], [16]. Here τ i represents the joint torques/forces

for joint i from Eq. 1. The quantity fC
i =

∑

k�i fk is the

composite spatial force transmitted across joint i, and ICi is

the composite rigid-body inertia of the sub-tree rooted at body

i, given as ICi =
∑

k�i Ik. The quantity Bk is a body-level

Coriolis matrix [14], [22],

Bk =
1

2
[(vk×

∗)Ik − Ik(vk×) + (Ikvk)×
∗] (6)

while BC
i is its composite given by BC

i =
∑

k�iBk. The

next sections extend Eqs. 7-8 for SO derivatives of ID.

∂τ i

∂qj
= S⊤

i

[

2BC
i

]

Ψ̇j + S
⊤
i I

C
i Ψ̈j , (j � i) (7a)

∂τ j

∂qi
= S⊤

j [2B
C
i Ψ̇i + I

C
i Ψ̈i + (fC

i)×
∗Si], (j ≺ i) (7b)

∂τ i

∂q̇j
= S⊤

i

[

2BC
i Sj + I

C
i (Ψ̇j + Ṡj)

]

, (j � i) (8a)

∂τ j

∂q̇i
= S⊤

j

[

2BC
i Si + I

C
i (Ψ̇i + Ṡi)

]

, (j ≺ i) (8b)

III. EXTENDING SVA FOR TENSORIAL USE

The motion space M6 [12] is extended to a space of spatial-

motion matrices M6×n, where each column of such a matrix

is a usual spatial motion vector. For any U ∈ M6×n a new

spatial cross-product operator ×̃ is considered and defined by

applying the usual spatial cross-product operator (×) to each

column of U . The result is a third-order tensor (Fig. 2) in

R
6×6×n where each 6 × 6 matrix in the 1-2 dimension is the

original spatial cross-product operator on a column of U .

Given two spatial motion matrices, U ∈ M6×nu and V ∈

M6×nv , we can now define a cross-product operation between

them as (U×̃)V ∈ M6×nv×nu via a tensor-matrix product.

Such an operation, denoted as Z = AB is defined as:

Zi,j,k =
∑

ℓ

Ai,ℓ,kBℓ,j (9)

for any tensor A and suitably sized matrix B. Thus, the k-th

page, j-th column of U×̃V gives the cross product of the k-th

column of U with the j-th column of V .

2

Fig. 2: ×̃ operates on each column of a U ∈ M6×n spatial matrix to
create a third-order tensor. Each rectangular box is a 2D matrix

In a similar manner, consider a spatial force matrix F ∈

F 6×nf . Defining (V ×̃∗) in an analogous manner to in Fig. 2

allows taking a cross-product-like operation V ×̃∗F . Again,

analogously, we consider a third operator (F ˜̄×∗) that provides

V ×̃∗F = F ˜̄×∗V . In each case, the tilde indicates the spatial-

matrix extension of the usual spatial-vector cross products.

For later use, the product of a matrix B ∈ R
n1×n2 , and

a tensor A ∈ R
n2×n3×n4 , likewise results in another tensor,

denoted as Y = BA, and defined as:

Yi,j,k =
∑

ℓ

Bi,ℓAℓ,j,k (10)

Two types of tensor rotations are defined for this paper:

1) A⊤̃: Transpose along the 1-2 dimension. This operation

can also be understood as the usual matrix transpose of

each matrix (e.g., in Fig. 2) moving along pages of the

tensor. If A⊤̃ = B, then Ai,j,k = Bj,i,k.

2) AR̃: Rotation of elements along the 2-3 dimension. If

AR̃ = B, then Ai,j,k = Bi,k,j .

Another rotation (R̃,̃⊤) is a combination of (R̃) followed by (⊤̃).

For example, if AR̃,̃⊤= B, then Ai,j,k = Bk,i,j .

Properties of the operators are given in Table I. These

properties naturally extend spatial vector properties [12], but

with the added book-keeping required from using tensors. For

example, the spatial force/vector cross-product operator ×∗

satisfies v×∗ = −v×⊤. Property M1 provides the matrix

analogy for the spatial matrix operator ×̃∗.

IV. SECOND-ORDER DERIVATIVES OF ID

A. Preliminaries

The SO partial derivative of joint torque/force is also referred

to as a dynamics Hessian tensor. Blocks of this rank 3 tensor

are written in a form ∂2τ i

∂uj∂uk
, which signifies taking partial

derivative of τ i w.r.t uj , followed by uk. The variables uj and

uk can either be the joint configuration (qj , qk), joint velocity

(q̇j , q̇k), or joint acceleration (q̈j , q̈k). Many of these second-

order partials are zero, limiting the cases to be considered.

From Eq. 1, the first-order partial derivative of τ w.r.t q̈ is

∂τ/∂q̈ =M(q). Taking subsequent partial derivatives results

in ∂2τ/∂q̈∂q̈ = 0 and ∂2τ/∂q̈∂q̇ = 0. However, the cross-

derivative w.r.t q̈ and q is non-trivial and equals ∂M(q)/∂q.

Garofalo et al. [23] present formulas for the partial derivative

of M(q) w.r.t q for multi-DoF Lie group joints. In this work,

we re-derive that result using newly developed spatial matrix

M1) U×̃∗ = −(U×̃)⊤̃

M2) −V ⊤(U×̃∗) = (U×̃V)⊤̃

M3) −V ⊤(U×̃∗)F = (U×̃V)⊤̃F

M4) (U×̃v) = −v ×U

M5) U×̃∗F = (F ˜̄×∗U)R̃

M6) F ˜̄×∗U = (U×̃∗F)R̃

M7) (λU)×̃ = λ(U×̃)

M8) U×̃V = −(V ×̃U)R̃

M9) (v ×U)×̃ = v ×U×̃ −U×̃v×

M10) (v ×U)×̃∗ = v ×∗ U×̃∗ −U×̃∗v×∗

M11) (U×̃∗v) ˜̄×∗ = U×̃∗v×∗ − v×∗U×̃

M12) (U×̃∗F)⊤̃ = −F⊤(U×̃)

M13) V ⊤(U×̃∗F) = (V ×̃U)R̃,̃⊤F = (F⊤(V ×̃U)R̃)⊤̃

M14) v ×∗ F = F ˜̄×∗v

M15) f×∗U = U×̃∗f

M16) V ⊤(U×̃∗F)R̃ =
[

(V ×̃U)R̃,̃⊤F
]

R̃

M17) V ⊤(U×̃∗F)R̃ = −[U⊤(V ×̃∗F)R̃]⊤̃

M18) V ⊤(U×̃∗F)R̃ = [V ⊤(U×̃∗F)]R̃

M19) (BY)⊤̃ = Y⊤̃B⊤

TABLE I: Spatial Matrix Algebra Identities: v ∈ M6,f ∈ F 6, U ∈

M6×n, F ∈ F 6×m, V ∈ M6×l, B ∈ R
n1×n2 , Y ∈ R

n2×n3×n4 .

operators and contribute new analytical SO partial derivatives

of ID w.r.t q and q̇.

For single-DoF joints, each block of the Hessian tensor
∂2τ i

∂uj∂uk
is a scalar representing a conventional SO derivative

w.r.t joint angles, rates, or accelerations. In this case, the order

of uj and uk doesn’t matter. This operation becomes more

nuanced when considering derivatives w.r.t configuration for

a multi-DoF joint, wherein we define the operator ∂
∂qk

to

represent a collection of Lie derivatives, as in [14]. For example,
∂τ i

∂qk
is defined as the ni × nk matrix where each column

gives the derivative of τ i ∈ R
ni w.r.t changes in configuration

along one of the nk free modes of joint k (see [14] for detail).

When the Lie derivatives along the free modes of a joint do

not commute, ∂2τ i

∂qk∂qk
can lack the usual symmetry properties.

Such a case occurs, for example, with a spherical joint, since

rotations do not commute. To obtain the partial derivatives of

spatial quantities embedded in Eq. 7-8, some identities (App. A)

are derived. These are an extension to ones defined in Ref. [14],

but use the newly developed spatial matrix operators from

Sec. III.

For example, identity K1 (App. A) is an extension of identity

J1 in Ref. [14]. The identity J1 (Eq. 11) gives the directional

derivative of the joint motion sub-space matrix Si w.r.t the pth

DoF of a previous joint j in the connectivity tree:

∂Si

∂qj,p
= sj,p × Si (j � i) (11)

where sj,p is the p-th column of Sj . On the other hand, K1

uses the ×̃ operator to extend it to the partial derivative of Si

w.r.t the full joint configuration qj to give the tensor ∂Si

∂qj
as:

∂Si

∂qj
= Sj×̃Si (j � i) (12)

3

The identities K4 and K9 describe the partial derivatives of

Ψ̇i and Ψ̈i present in Eq. 7-8. Identities K6, K10, and K12

give the partial derivatives of the composite Inertia (ICi), body-

level Coriolis matrix (BC
i), and net composite spatial force on

a body (fC
i). Individual partial derivatives of these quantities

allow us to use the plug-and-play approach to simplify the

algebra needed for SO partial derivatives of ID.

To calculate the SO partial derivatives, we take subsequent

partial derivatives of the terms ∂τ i

∂qj
,

∂τ j

∂qi
,∂τ i

∂q̇j
, and

∂τ j

∂q̇i
w.r.t

joint configuration (q), and joint velocity (q̇) for joint k. We

consider three cases, by changing the order of index k as:

Case A: k � j � i Case B: j ≺ k � i Case C: j � i ≺ k

The sections below outline the approach for calculating the SO

partial derivatives. Only some cases are shown to illustrate the

main idea, with a detailed summary of all the cases in App. B,

and full step-by-step derivations in Ref. [19].

B. Second-order partial derivatives w.r.t q

For SO partials of ID w.r.t q, we take the partial derivatives

of Eq. 7a, and 7b w.r.t qk for cases A, B, and C mentioned

above. Although, the symmetric blocks in the Hessian allow

us to re-use three of those six cases. For any of the cases,

the partial derivatives of Eq. 7a and 7b can be taken, as long

as the accompanying conditions on the equations are met. For

example, for Case B (j ≺ k � i), since j ≺ i, only Eq. 7b can

be used. A derivation for Case C (j � i ≺ k) is shown here

as an example. We take the partial derivative of Eq. 7a w.r.t

qk. Applying the product rule, and using the identities K4, K9,

and K13 as:

∂2τ i

∂qj∂qk
= 2S⊤

i

(

∂BC
i

∂qk
Ψ̇j

)

+ S⊤
i

(

∂ICi
∂qk

Ψ̈j

)

(13)

The quantities
∂BC

i

∂qk
and

∂IC
i

∂qk
are third-order tensors where the

partial derivatives of matrices BC
i and ICi w.r.t each DoF of

joint k are stacked as matrices along the pages of the tensor.

Using the identities K6 and K10 then gives:

∂2τ i

∂qj∂qk
= 2S⊤

i

(

BC
k

[

Ψ̇k

]

+ Sk×̃
∗BC

k −BC
k (Sk×̃)

)

Ψ̇j

+ S⊤
i

(

Sk×̃
∗ICk − ICk (Sk×̃)

)

Ψ̈j (14)

where the tensor BC
k

[

Ψ̇k

]

is a composite calculated for the

sub-tree as BC
k

[

Ψ̇k

]

=
∑

l�k Bl[Ψ̇k], with:

Bl

[

Ψ̇k

]

=
1

2

[(

Ψ̇k×̃
∗
)

I l − I l
(

Ψ̇k×̃
)

+
(

I lΨ̇k

)

˜̄×∗
]

(15)

Eq. 15 is a tensor extension of the body-level Coriolis matrix

(Eq. 6) with a spatial matrix argument. Expressions for other

cases are in App. B with full derivation in Ref. [19, Sec. IV].

C. Cross Second Order Partial derivatives w.r.t q̈ and q

As explained before, the cross-SO partial derivatives of ID

w.r.t q̈ and q results in ∂M
∂q . The lower-triangle of the mass

matrix M(q) for the case j � i is given as [12]:

M ji = S
⊤
j I

C
i Si (16)

Since M(q) is symmetric [12], M ij = M⊤
ji. We apply the

three cases A, B, and C discussed before. As an example, for

Case B (j ≺ k � i), we take the partial derivative of M ji w.r.t

qk and use the product rule, along with identity K13 as:

∂M ji

∂qk
= S⊤

j

(

∂ICi
∂qk

Si + I
C
i

∂Si

∂qk

)

(17)

Using with identities K1 and K6, and canceling terms gives:

∂M ji

∂qk
= S⊤

j (Sk×̃
∗ICi)Si (18)

Expressions for other cases are listed in App. B, with details

of derivation at Ref. [19, Sec. VII]

D. Second-order partial derivatives involving q̇

For SO partial derivatives w.r.t q̇, we take the partial deriva-

tives of Eq. 8a and 8b w.r.t q̇k. A list of expressions is given

in App. B, with full derivation in Ref. [19, Sec. V].

For cross-SO partial derivatives of ID, we take the partial

derivative of Eqs. 8a-8b w.r.t qk to get ∂2τ
∂q̇∂q . The three cases

A,B, and C (Sec. IV-A) for Eq. 8a-8b result in six expressions,

which are then also used for the symmetric term ∂2τ
∂q∂q̇ as:

∂2τ

∂q∂q̇
=

[

∂2τ

∂q̇∂q

]

R̃

(19)

Here, we solve all the three cases A, B and C for both Eq. 8a

and Eq. 8b. Pertaining to Case A (k � j � i), since j � i,

Eq. 8a can be safely used to get ∂2τ i

∂q̇j∂qk
. However, the j 6=

i requirement on Eq. 8b constrains the condition in Case A

to k � j ≺ i. Similarly, for Case C (j � i ≺ k), taking

partial derivative of Eq. 8b results in a stricter case j ≺ i ≺ k.

Appendix B lists the six expressions with full derivation in

Ref. [19, Sec. VI].

V. EFFICIENT IMPLEMENTATION AND ALGORITHM

For efficient implementation of the algorithm, all the cases

are converted to an index order of k � j � i. This notation is

explained with the help of following two examples.

Example 1: In Eq. 14, we first we switch the indices k and

j, followed by j and i to get
∂2τ j

∂qk∂qi
as

∂2τ j

∂qk∂qi
= 2S⊤

j

(

BC
i

[

Ψ̇i

]

+ Si×̃
∗BC

i −BC
i (Si×̃)

)

Ψ̇k

+ S⊤
j

(

Si×̃
∗ICi − ICi (Si×̃)

)

Ψ̈k (20)

For the term
∂2τ j

∂qi∂qk
, when k 6= i, the symmetry property of

Hessian blocks can be exploited:

∂2τ j

∂qi∂qk
=

[

∂2τ j

∂qk∂qi

]

R̃

, (k � j ≺ i) (21)

The 2-3 tensor rotation in Eq. 21 occurs due to symmetry along

the 2nd and 3rd dimensions.

Example 2: In Eq. 18, switching indices k and j leads to

the index order k ≺ j � i. Using property M5 leads to:

∂Mki

∂qj
= S⊤

k ((I
C
i Si) ˜̄×

∗Sj)
R̃ (22)

4

Symmetry of M (q) gives us ∂Mik

∂qj
as:

∂M ik

∂qj

=

[

∂Mki

∂qj

]⊤̃

(23)

In this case, since the symmetry is along the 1st and the 2nd

dimension of ∂Mki

∂qj
, the tensor 1-2 rotation takes place.

The expressions for SO partials of ID (App. B) are first

reduced to matrix and vector form to avoid tensor operations.

This refactoring is due, in part, to a lack of stable tensor

support in the C++ Eigen library that is often used in robotics

dynamics libraries. This reduction is achieved by considering

the expressions for single DoF of joints i, j, and k, one at a

time. We explain this process with the help of two examples.

Example 1: Considering the case k ≺ j � i the expression

∂2τ i

∂q̇j∂q̇k

= −
[

S
⊤

j (2B
C
i [Si]Sk)

R̃
]⊤̃

is studied for the pth, tth, and rth DoFs of the joints i, j and

k, respectively. The tensor term BC
i [Si] (defined by Eq. 15)

reduces to a matrix BC
i [si,p], where si,p is p-th column of Si.

This term represents the value BC
i would take if all bodies in

the subtree at i moved with velocity si,p. The above reduction

enables dropping the 3D tensor rotation (R̃). The products of

BC
i [si,p] with column vectors sj,t and sk,r then provides a

scalar, resulting in dropping the rotation (⊤̃) from above:

∂2τ i,p

∂q̇j,t∂q̇k,r

= −2s⊤

j,t

(

B
C
i [si,p]sk,r

)

(24)

Example 2: The term ∂2τ i

∂q̇k∂q̇j
=

[

∂2τ i

∂q̇j∂q̇k

]R̃

is evaluated for

the pth, tth, and rth DoFs of the joints i, j and k, respectively.

In this case, the 2-3 tensor rotation (R̃) drops out, since the

resulting expression is a scalar.

∂2τ i,p

∂q̇k,r∂q̇j,t

=
∂2τ i,p

∂q̇j,t∂q̇k,r

(25)

Algorithm 1 (IDSVA SO) is detailed in App. B and returns

all the SO partials from Sec. IV. It is implemented with all

kinematic and dynamic quantities represented in the ground

frame. The forward pass in Alg. 1 (Lines 2-11) solves for

kinematic and dynamic quantities like ai,B
C
i , fC

i , Ψ̇i, and Ψ̈i

for the entire tree. The quantity 1
2 is skipped from the definition

of BC
i to make algebra simpler, and necessary adjustments are

made in the algorithm. The backward pass then cycles from

leaves to root of the tree and consists of three main nested

loops, each one for bodies i, j, and k. These three nested loops

also consist of a nested loop for each DoF of joint i, j, and k.

The indices p (from 1 to ni, Line 13), t (from 1 to nj , Line

27), and r (from 1 to nk, Line 39) cycle over all of the DoFs

of joints i, j, and k respectively. Some of the intermediate

quantities in the algorithm are defined for a DoF of a joint.

For example, in Line 14, sp is simply the pth column of Si.

Similar quantities for joint j and k are defined in Line 28 and

40 respectively.

The backward pass (Lines 13-74) cycles n times in total (i.e.,

over all joints), with the nested loops (Lines 27-71 and 39-68)

100 101 102
100
101
102
103

100 101 102
100

101

102

Fig. 3: a) IDSVA outperforms the AD & complex-step approach for
all serial (bold)/branched (dashed) chains in the CasADi [20] virtual
machine when N < 70 b) speedup of IDSVA over AD & complex-
step for serial and branched bf = 2 chains.

each executing at most 6d times per cycle of its parent loop.

Thus, the total computational complexity is O(Nd2).
While the algorithm is complex, an open-source MATLAB

version of it can be found at [24], and is integrated with

Featherstone’s spatial v2 library [12]

VI. ACCURACY AND PERFORMANCE

A complex-step method [25] was used to calculate the

SO partials of ID and verify the accuracy for the proposed

algorithm. The complex-step approach was applied to FO

derivatives of ID [14] and verified derivatives accurate to

machine precision.

For run-time comparison, the automatic differentiation tool

CasADi [20] in MATLAB was used. AD was used to take

the Jacobian of [∂τ∂q ,
∂τ
∂q̇]

⊤, via its application to the algorithm

presented in Ref. [14] for the FO derivatives. Since CasADi

is not compatible with functions defined on a Lie group,

systems with single DoF revolute joints were considered. Fig. 3

shows a comparison of IDSVA with the AD and complex-step

approach for serial and branched chains with a branching factor

bf [12]. For serial chains, IDSVA outperforms AD for all N ,

with speedups between 1.5 and 3× for models with N > 5.

For branched chains, the AD computational graph is highly

efficient, resulting in performance gains beyond a critical N .

For bf = 2 chains, this critical N lies at N = 70. The complex-

step method is accurate but slow in run-time, as seen from the

plot in Fig. 3.

A preliminary run-time analysis was also performed with an

implementation, available at [26], extending the Pinocchio [27]

open-source library. Fig. 4 gives run-time numbers (in µs)

for several fixed/floating base models for the IDSVA SO

(1) algorithm, implemented in C/C++ within the Pinocchio

framework [27]. For reference, the run-times for RNEA [12],

and the IDSVA FO algorithm given in [14] are also provided.

From Fig. 4, the ratio of run-times for SO to FO derivatives

increases with N due to the algorithm complexity ratio of d
between the two algorithms. All computations were performed

on an Intel (R) 12th Gen i5-12400 CPU with 2.5 Ghz, with

5

UR 3
(6)

HyQ(18)

Baxter(1
9)

ATLAS(35)

Talos(50)

10 0

10 1

10 2

10 3

10 4

Fig. 4: Run-time comparison between Pinocchio [27] C++ implemen-
tation of RNEA [12], IDSVA FO [14], and IDSVA SO using GCC
9.4 (dark), Clang 10.0 (light) compilers. Fixed base- UR3, Baxter.
Floating base- HyQ, ATLAS, Talos.

turbo boost off. From Fig. 4, SO partial derivatives of a floating

base 18-DoF HyQ quadruped model take 51 µs in the C/C++

implementation.

VII. CONCLUSIONS

In this paper, SO partial derivatives of rigid-body inverse

dynamics w.r.t q, q̇, and q̈ were derived using Spatial Vector Al-

gebra (SVA) for models with multi-DoF Lie group joints. SVA

was extended for spatial matrices to enable tensor operations

required for the SO derivatives. This extension was done using

three cross-product operators for spatial matrices. An efficient

recursive algorithm was also developed to calculate the SO

partial derivatives of ID by exploiting common expressions and

the structure of the connectivity tree. A MATLAB run-time

comparison with AD using CasADi shows a speedup between

1.5-3× for serial chains with N > 5. Future work will focus

on closed-chain structures, more efficient C/C++ implementa-

tion, and further analysis considering code-generation and AD

strategies in C/C++.

APPENDIX A: MULTI-DOF JOINT IDENTITIES

The following spatial vector/matrix identities are derived by

taking the partial derivative w.r.t the full joint configuration

(qj), or joint velocity (q̇j) of the joint j. In each, the quantity

to the left of the equals sign equals the expression to the right

if j � i, and is zero otherwise, unless otherwise stated.

∂Si

∂qj

= Sj×̃Si (K1)

∂Ṡi

∂qj

= Ψ̇j×̃Si + Sj×̃Ṡi (K2)

∂(Siq̇i × Si)

∂qj

= Sj×̃(Siq̇i × Si) (K3)

∂Ψ̇i

∂qj

= Ψ̇j×̃Si + Sj×̃Ψ̇i (K4)

∂Ii

∂qj

= Sj×̃
∗
Ii − Ii(Sj×̃) (K5)

∂IC
i

∂qj

=

{

Sj×̃
∗IC

i − IC
i (Sj×̃), if j � i

Sj×̃
∗IC

j − IC
j (Sj×̃), if j ≻ i

(K6)

∂ai

∂qj

= Ψ̈j − vi × Ψ̇j − ai × Sj (K7)

∂(Iiai)

∂qj

= Sj×̃
∗(Iiai) + IiΨ̈j − Ii(vi × Ψ̇j) (K8)

∂Ψ̈i

∂qj

= Ψ̈j×̃Si + 2Ψ̇j×̃Ψ̇i + Sj×̃Ψ̈i (K9)

∂BC
i

∂qj

=

{

BC
i

[

Ψ̇j

]

+ Sj×̃
∗BC

i −BC
i (Sj×̃), if j � i

BC
j

[

Ψ̇j

]

+ Sj×̃
∗BC

j −BC
j (Sj×̃), if j ≻ i

(K10)

∂f i

∂qj

= IiΨ̈j + Sj×̃
∗
f i + 2BiΨ̇j (K11)

∂fC
i

∂qj

=

{

IC
i Ψ̈j + Sj×̃

∗fC
i + 2BC

i Ψ̇j , if j � i

IC
j Ψ̈j + Sj×̃

∗fC
j + 2BC

j Ψ̇j , if j ≻ i
(K12)

∂S⊤

i

∂qj

= −S
⊤

i Sj×̃
∗

(K13)

∂Ṡi

∂q̇j

= Sj×̃Si (K14)

∂Ψ̇i

∂q̇j

=

{

Sj×̃Si, if j ≺ i

0, otherwise
(K15)

∂BC
i

∂q̇j

=

{

BC
i [Sj], if j � i

BC
j [Sj], if j ≻ i

(K16)

APPENDIX B: SUMMARY

Common Terms:

A1 , Si×̃
∗
B

C
i −B

C
i Si×̃

A2 , Si×̃
∗
I
C
i − I

C
i Si×̃

SO Partials w.r.t q:

∂2τ i

∂qj∂qk

= −

[

Ψ̇
⊤

j [2B
C
i [Si]Ψ̇k]

R̃ + 2S⊤

j ((B
C⊤

i Si) ˜̄×
∗
Ψ̇k)

R̃+

S
⊤

j ((I
C
i Si) ˜̄×

∗
Ψ̈k)

R̃

]⊤̃

, (k � j � i)

∂2τ i

∂qk∂qj

=

[

∂2τ i

∂qj∂qk

]R̃

, (k ≺ j � i)

∂2τk

∂qi∂qj

= S
⊤

k

(

[

2(BC
i

[

Ψ̇i

]

+A1)Ψ̇j +A2Ψ̈j

]

R̃
+

Sj×̃
∗
(

2BC
i Ψ̇i + I

C
i Ψ̈i + f

C
i ×

∗
Si

)

)

, (k ≺ j � i)

∂2τk

∂qj∂qi

=

[

∂2τ k

∂qi∂qj

]R̃

, (k ≺ j ≺ i)

∂2τ j

∂qk∂qi

= S
⊤

j

(

2(BC
i

[

Ψ̇i

]

+A1)Ψ̇k +A2Ψ̈k

)

, (k � j ≺ i)

∂2τ j

∂qi∂qk

=

[

∂2τ j

∂qk∂qi

]R̃

, (k � j ≺ i)

SO Partials w.r.t q̇:

∂2τ i

∂q̇j∂q̇k

= −
[

S
⊤

j (2B
C
i [Si]Sk)

R̃
]⊤̃

, (k ≺ j � i)

∂2τ i

∂q̇k∂q̇j

=

[

∂2τ i

∂q̇j∂q̇k

]R̃

, (k ≺ j � i)

∂2τ i

∂q̇j∂q̇k

= −
[

S
⊤

j (A2Sk)
R̃
]⊤̃

, (k = j � i)

6

∂2τ k

∂q̇i∂q̇j

= S
⊤

k

[

2BC
i [Si]Sj

]

R̃

, (k ≺ j ≺ i)

∂2τ k

∂q̇j∂q̇i

=

[

∂2τk

∂q̇i∂q̇j

]R̃

, (k ≺ j ≺ i)

∂2τ k

∂q̇i∂q̇j

= S
⊤

k

[

(

(IC
i Si) ˜̄×

∗ + Si×̃
∗
I
C
i

)

Sj

]

R̃

, (k ≺ j = i)

∂2τ j

∂q̇k∂q̇i

= S
⊤

j

[

2BC
i [Si]Sk

]

, (k � j ≺ i)

∂2τ j

∂q̇i∂q̇k

=

[

∂2τ j

∂q̇k∂q̇i

]R̃

, (k � j ≺ i)

Cross SO Partials w.r.t q and q̇:

∂2τ i

∂q̇j∂qk

= −
[

S
⊤

j

(

2BC
i [Si]Ψ̇k

)

R̃
]⊤̃

, (k � j � i)

∂2τ j

∂q̇i∂qk

= S
⊤

j

[

2BC
i [Si]Ψ̇k

]

R̃

, (k � j ≺ i)

∂2τ i

∂q̇k∂qj

=
[

S
⊤

k (−2BC
i [Si]Ψ̇j + (2BC⊤

i Si) ˜̄×
∗
Sj

+ 2(IC
i Si) ˜̄×

∗
Ψ̇j)

R̃ + (Ψ̇k + Ṡk)
⊤((IC

i Si) ˜̄×
∗
Ψ̇j)

R̃
]⊤̃

, (k ≺ j � i)

∂2τk

∂q̇i∂qj

= S
⊤

k

[

(

2BC
i Si + I

C
i (Ψ̇i + Ṡi)

)

˜̄×
∗
Sj+

2BC
i [Si]Ψ̇j

]

R̃

, (k ≺ j � i)

∂2τ j

∂q̇k∂qi

= S
⊤

j

(

2
(

B
C
i

[

Ψ̇i

]

+A1

)

Sk +A2(Ψ̇k + Ṡk)
)

,

(k � j ≺ i)

∂2τk

∂q̇j∂qi

= S
⊤

k

(

2
(

B
C
i

[

Ψ̇i

]

+A1

)

Sj +A2(Ψ̇j + Ṡj)
)

,

(k ≺ j ≺ i)

FO Partials of M(q) w.r.t q:

∂M ji

∂qk

=
∂M ij

∂qk

= 0, (k � j � i)

∂Mki

∂qj

= S
⊤

k ((I
C
i Si) ˜̄×

∗
Sj)

R̃
, (k ≺ j � i)

∂M ik

∂qj

=

[

∂Mki

∂qj

]⊤̃

, (k ≺ j � i)

∂Mkj

∂qi

= S
⊤

k A2Sj , (k � j ≺ i)

∂M jk

∂qi

=

[

∂Mkj

∂qi

]⊤̃

, (k � j ≺ i)

REFERENCES

[1] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of complex
behaviors through online trajectory optimization,” in IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems, 2012, pp. 4906–4913.

[2] J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Ben-
newitz, and N. Mansard, “Whole-body model-predictive control applied
to the hrp-2 humanoid,” in IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems, 2015, pp. 3346–3351.

[3] D. Mayne, “A second-order gradient method for determining optimal
trajectories of non-linear discrete-time systems,” Int. J. of Control, vol. 3,
no. 1, pp. 85–95, 1966.

[4] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential
dynamic programming,” in IEEE Int. Conf. on Robotics and Automation,
2014, pp. 1168–1175.

[5] I. Chatzinikolaidis and Z. Li, “Trajectory optimization of contact-rich mo-
tions using implicit differential dynamic programming,” IEEE Robotics

and Automation Letters, vol. 6, no. 2, pp. 2626–2633, 2021.
[6] C. Mastalli et al., “Crocoddyl: An efficient and versatile framework

for multi-contact optimal control,” in IEEE Int. Conf. on Robotics and

Automation, 2020, pp. 2536–2542.
[7] H. Li and P. M. Wensing, “Hybrid systems differential dynamic program-

ming for whole-body motion planning of legged robots,” IEEE Robotics

and Automation Letters, vol. 5, no. 4, pp. 5448–5455, 2020.
[8] E. Pellegrini and R. P. Russell, “A multiple-shooting differential dynamic

programming algorithm. part 1: Theory,” Acta Astronautica, vol. 170, pp.
686–700, 2020.

[9] B. Plancher and S. Kuindersma, “A performance analysis of parallel
differential dynamic programming on a GPU,” in Int. Workshop on the

Algorithmic Foundations of Robotics, 2018, pp. 656–672.
[10] S.-H. Lee, J. Kim, F. C. Park, M. Kim, and J. E. Bobrow, “Newton-

type algorithms for dynamics-based robot movement optimization,” IEEE

Transactions on Robotics, vol. 21, no. 4, pp. 657–667, 2005.
[11] J. N. Nganga and P. M. Wensing, “Accelerating second-order differential

dynamic programming for rigid-body systems,” IEEE Robotics and

Automation Letters, vol. 6, no. 4, pp. 7659–7666, 2021.
[12] R. Featherstone, Rigid Body Dynamics Algorithms. Springer, 2008.
[13] A. Kowarz and A. Walther, “Optimal checkpointing for time-stepping

procedures in ADOL-C,” in Int. Conf. on Computational Science, 2006,
pp. 541–549.

[14] S. Singh, R. Russell, and P. M. Wensing, “Efficient analytical derivatives
of rigid-body dynamics using spatial vector algebra,” IEEE Robotics and

Automation Letters, vol. 7, no. 2, pp. 1776–1783, 2022.
[15] A. Jain and G. Rodriguez, “Linearization of manipulator dynamics using

spatial operators,” IEEE transactions on Systems, Man, and Cybernetics,
vol. 23, no. 1, pp. 239–248, 1993.

[16] K. Ayusawa and E. Yoshida, “Comprehensive theory of differential kine-
matics and dynamics towards extensive motion optimization framework,”
Int. J. of Robotics Research, vol. 37, no. 13-14, pp. 1554–1572, 2018.

[17] J. Carpentier and N. Mansard, “Analytical derivatives of rigid body
dynamics algorithms,” in Robotics: Science and systems, 2018.

[18] B. Plancher, S. M. Neuman, T. Bourgeat, S. Kuindersma, S. Devadas, and
V. J. Reddi, “Accelerating robot dynamics gradients on a cpu, gpu, and
fpga,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2335–
2342, 2021.

[19] S. Singh, R. P. Russell, and P. M. Wensing, “Details of second-order par-
tial derivatives of rigid-body inverse dynamics,” 2022, arXiv:2203.00679.

[20] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi: a software framework for nonlinear optimization and optimal
control,” Mathematical Prog. Comp., vol. 11, no. 1, pp. 1–36, 2019.

[21] D. E. Orin, R. McGhee, M. Vukobratović, and G. Hartoch, “Kinematic
and kinetic analysis of open-chain linkages utilizing Newton-Euler meth-
ods,” Math. Biosciences, vol. 43, no. 1-2, pp. 107–130, 1979.

[22] S. Echeandia and P. M. Wensing, “Numerical methods to compute the
coriolis matrix and christoffel symbols for rigid-body systems,” Journal

of Comp. and Nonlinear Dynamics, vol. 16, no. 9, 2021.
[23] G. Garofalo, C. Ott, and A. Albu-Schäffer, “On the closed form compu-

tation of the dynamic matrices and their differentiations,” in IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems, 2013, pp. 2364–2359.
[24] S. Singh and P. M. Wensing, https://github.com/ROAM-Lab-ND/spatial_

v2_extended/blob/main/v3/derivatives/ID_SO_derivatives.m, 2022, see
commit: b06fd78, 03/01/2022.

[25] C. C. Cossette, A. Walsh, and J. R. Forbes, “The complex-step derivative
approximation on matrix lie groups,” IEEE Robotics and Automation

Letters, vol. 5, no. 2, pp. 906–913, 2020.
[26] S. Singh, https://github.com/shubhamsingh91/pinocchio/blob/master/src/

algorithm/rnea_SO_derivatives.hxx, 2022.
[27] J. Carpentier et al., “The Pinocchio C++ library: A fast and flexible

implementation of rigid body dynamics algorithms and their analytical
derivatives,” in IEEE/SICE Int. Symposium on System Integration, 2019,
pp. 614–619.

7

https://github.com/ROAM-Lab-ND/spatial_v2_extended/blob/main/v3/derivatives/ID_SO_derivatives.m
https://github.com/ROAM-Lab-ND/spatial_v2_extended/blob/main/v3/derivatives/ID_SO_derivatives.m
https://github.com/shubhamsingh91/pinocchio/blob/master/src/algorithm/rnea_SO_derivatives.hxx
https://github.com/shubhamsingh91/pinocchio/blob/master/src/algorithm/rnea_SO_derivatives.hxx

Algorithm 1 IDSVA SO Algorithm. Temporary variables in the algorithm are sized as Ai ∈ R
6×6 for matrices, and ui ∈ R

6×1

for vectors.

Require: q, q̇, q̈, model

1: v0 = 0; a0 = −ag

2: for j = 1 to N do

3: vi = vλ(i) + Siq̇i

4: ai = aλ(i) + Siq̈i + vi × Siq̇i

5: Ṡi = vi × Si

6: Ψ̇i = vλ(i) × Si

7: Ψ̈i = aλ(i) × Si + vλ(i) × Ψ̇i

8: ICi = Ii

9: BC
i = (vi×

∗)Ii − Ii(vi×) + (Iivi)×
∗

10: f
C
i = Iiai + (vi×

∗)Iivi

11: end for

12: for i = N to 1 do

13: for p = 1 to ni do

14: sp = Si,p; ψ̇p = Ψ̇i,p; ψ̈p = Ψ̈i,p; ṡp = Ṡi,p

15: BC
i (sp) = (sp×

∗)ICi − ICi (sp×) + (ICi sp)×
∗

16: BC
i (ψ̇p) = (ψ̇p×

∗)ICi − ICi (ψ̇p×) + (ICi ψ̇p)×
∗

17: A0 = (ICi sp)×
∗

18: A1 = sp×
∗ICi − ICi × sp

19: A2 = 2A0 −B
C
i (sp)

20: A3 = BC
i (ψ̇p) + sp×

∗BC
i −BC

i × sp

21: A4 = (BC,⊤
i sp)×

∗

22: A5 = (BC
i ψ̇p + I

C
i ψ̈p + sp×

∗f i)×
∗

23: A6 = sp×
∗ICi +A0

24: A7 = (BC
i sp + I

C
i (ψ̇p + ṡp))×

∗

25: j = i

26: while j > 0 do

27: for t = 1 to nj do

28: st = Sj,t; ψ̇t = Ψ̇j,t; ψ̈t = Ψ̈j,t; ṡt = Ṡj,t

29: u1 = A⊤
3 st; u2 = A⊤

1 st

30: u3 = A3ψ̇t +A1ψ̈t +A5st

31: u4 = A6st; u5 = A2ψ̇t +A4st

32: u6 = BC
i (sp)ψ̇t +A7st

33: u7 = A3st +A1(ψ̇t + ṡt)

34: u8 = A4st −B
C,T
i (sp)ψ̇t; u9 = A0st

35: u10 = BC
i (sp)st; u11 = BC,T

i (sp)st

36: u12 = A1st

37: k = j

38: while k > 0 do

39: for r = 1 to nk do

40: sr = Sk,r; ψ̇r = Ψ̇k,r

41: ψ̈r = Ψ̈k,r; ṡr = Ṡk,r

42: p1 = u⊤
11ψ̇r

43: p2 = u⊤
8 ψ̇r + u

⊤
9 ψ̈r

44:
∂2τ i,p

∂qj,t∂qk,r
= p2;

∂2τ i,p

∂qk,r∂q̇j,t
= −p1

45: if j 6= i then

46:
∂2τ j,t

∂qk,r∂qi,p
=

∂2τ j,t

∂qi,p∂qk,r
= u⊤

1 ψ̇r +u
⊤
2 ψ̈r

47:
∂2τ j,t

∂qi,p∂q̇k,r
= u⊤

1 sr + u
⊤
2 (ṡr + ψ̇r)

48:
∂2τ j,t

∂qk,r∂q̇i,p
= p1

49:
∂2τ j,t

∂q̇k,r∂q̇i,p
=

∂2τ j,t

∂q̇i,p∂q̇k,r
= u⊤

11sr

50:
∂Mk,r,j,t

∂qi,p
=

∂Mj,t,k,r

∂qi,p
= s⊤r u12

51: end if

52: if k 6= j then

53:
∂2τ i,p

∂qk,r∂qj,t
= p2;

∂2τk,r

∂qi,p∂qj,t
= s⊤r u3

54:
∂2τ i,p

∂q̇j,t∂q̇k,r
=

∂2τ i,p

∂q̇k,r∂q̇j,t
= −u⊤

11sr

55:
∂2τ i,p

∂qj,t∂q̇k,r
= s⊤r u5 + u

⊤
9 (ṡr + ψ̇r)

56:
∂2τk,r

∂qj,t∂q̇i,p
= s⊤r u6

57:
∂Mk,r,i,p

∂qj,t
=

∂Mi,p,k,r

∂qj,t
= s⊤r u9

58: if j 6= i then

59:
∂2τk,r

∂qj,t∂qi,p
=

∂2τk,r

∂qi,p∂qj,t

60:
∂2τk,r

∂qi,p∂q̇j,t
= s⊤r u7

61:
∂2τk,r

∂q̇i,p∂q̇j,t
=

∂2τk,r

∂q̇j,t∂q̇i,p
= s⊤r u10

62: else

63:
∂2τk,r

∂q̇j,t∂q̇i,p
= s⊤r u4

64: end if

65: else

66:
∂2τ i,p

∂q̇j,t∂q̇k,r
= −u⊤

2 sr

67: end if

68: end for

69: k = λ(k)

70: end while

71: end for

72: j = λ(j)

73: end while

74: end for

75: if λ(i) > 0 then

76: ICλ(i) = I
C
λ(i) + I

C
i ; B

C
λ(i) = B

C
λ(i) +B

C
i

77: fC
λ(i) = f

C
λ(i) + f

C
i

78: end if

79: end for

80: return ∂2τ
∂q2 ,

∂2τ
∂q̇2 ,

∂2τ
∂q∂q̇ ,

∂M
∂q

8

	I Introduction
	II Rigid-Body Dynamics Background
	III Extending SVA For Tensorial Use
	IV Second-Order Derivatives of ID
	IV-A Preliminaries
	IV-B Second-order partial derivatives w.r.t bold0mu mumu qq2005/06/28 ver: 1.3 subfig packageqqqq
	IV-C Cross Second Order Partial derivatives w.r.t and bold0mu mumu qq2005/06/28 ver: 1.3 subfig packageqqqq
	IV-D Second-order partial derivatives involving

	V Efficient Implementation and Algorithm
	VI Accuracy and Performance
	VII Conclusions
	Appendix A: Multi-DoF Joint Identities
	Appendix B: Summary
	References

